Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

نویسندگان

  • Ping Huang
  • I-I Lin
  • Chia Chou
  • Rong-Hui Huang
چکیده

Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ocean barrier layers' effect on tropical cyclone intensification.

Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-p...

متن کامل

Atmosphere-Ocean Coupling Effect on Intense Tropical Cyclone Distribution and its Future Change with 60 km-AOGCM

Atmosphere-ocean coupling effect on the frequency distribution of tropical cyclones (TCs) and its future change is studied using an atmosphere and ocean coupled general circulation model (AOGCM). In the present climate simulation, the atmosphere-ocean coupling in the AOGCM improves biases in the AGCM such as the poleward shift of the maximum of intense TC distribution in the Northern Hemisphere...

متن کامل

Observational Evidence for Oceanic Controls on Hurricane Intensity

The influence of oceanic changes on tropical cyclone activity is investigated using observational estimates of sea surface temperature (SST), air–sea fluxes, and ocean subsurface thermal structure during the period 1998– 2007. SST conditions are examined before, during, and after the passage of tropical cyclones, through Lagrangian composites along cyclone tracks across all ocean basins, with p...

متن کامل

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

[1] The responses of tropical cyclone (TC) potential intensity (PI) and the associated environmental control parameters over the North Indian Ocean (NIO) to the doubled CO2 concentration are assessed based on the ensemble simulation from 15 coupled general circulation models (CGCMs) participated in the Intergovernmental Panel for Climate Change (IPCC) Forth Assessment Report (AR4). The results ...

متن کامل

Global warming shifts Pacific tropical cyclone location

[1] A global high‐resolution (∼40 km) atmospheric general circulation model (ECHAM5 T319) is used to investigate the change of tropical cyclone frequency in the North Pacific under global warming. A time slice method is used in which sea surface temperature fields derived from a lower‐ resolution coupled model run under the 20C3M (in which historical greenhouse gases in 20th century were prescr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015